Solution structure of Escherichia coli FeoA and its potential role in bacterial ferrous iron transport.
نویسندگان
چکیده
Iron is an indispensable nutrient for most organisms. Ferric iron (Fe(3+)) predominates under aerobic conditions, while during oxygen limitation ferrous (Fe(2+)) iron is usually present. The Feo system is a bacterial ferrous iron transport system first discovered in Escherichia coli K-12. It consists of three genes, feoA, feoB, and feoC (yhgG). FeoB is thought to be the main transmembrane transporter while FeoC is considered to be a transcriptional regulator. Using multidimensional nuclear magnetic resonance (NMR) spectroscopy, we have determined the solution structure of E. coli FeoA. The structure of FeoA reveals a Src-homology 3 (SH3)-like fold. The structure is composed of a β-barrel with two α-helices where one helix is positioned over the barrel. In comparison to the standard eukaryotic SH3 fold, FeoA has two additional α-helices. FeoA was further characterized by heteronuclear NMR dynamics measurements, which suggest that it is a monomeric, stable globular protein. Model-free analysis of the NMR relaxation results indicates that a slow conformational dynamic process is occurring in β-strand 4 that may be important for function. (31)P NMR-based GTPase activity measurements with the N-terminal domain of FeoB (NFeoB) indicate a higher GTP hydrolysis rate in the presence of potassium than with sodium. Further enzymatic assays with NFeoB suggest that FeoA may not act as a GTPase-activating protein as previously proposed. These findings, together with bioinformatics and structural analyses, suggest that FeoA may have a different role, possibly interacting with the cytoplasmic domain of the highly conserved core portion of the FeoB transmembrane region.
منابع مشابه
Vibrio cholerae FeoA, FeoB, and FeoC Interact To Form a Complex.
UNLABELLED Feo is the major ferrous iron transport system in prokaryotes. Despite having been discovered over 25 years ago and found to be widely distributed among bacteria, Feo is poorly understood, as its structure and mechanism of iron transport have not been determined. The feo operon in Vibrio cholerae is made up of three genes, encoding the FeoA, FeoB, and FeoC proteins, which are all req...
متن کاملMajor role for FeoB in Campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival.
To assess the importance of ferrous iron acquisition in Campylobacter physiology and pathogenesis, we disrupted and characterized the Fe2+ iron transporter, FeoB, in Campylobacter jejuni NCTC 11168, 81-176, and ATCC 43431. The feoB mutant was significantly affected in its ability to transport 55Fe2+. It accumulated half the amount of iron than the wild-type strain during growth in an iron-conta...
متن کاملحرکت باکتری اشرشیا کولی (Escherichia coli) آزادشده از کود گاوی در خاک غیراشباع مزرعه
In agriculture, cow manures are used to enhance soil fertility and productivity. Escherichia coli is the most common fecal coliform in cow manure and considered as an index for microbial contamination of groundwater resources. The objective of this study was to investigate the transport of Escherichia coli (released from cow manure) through the field soil. Lysimeters (with internal diameter of ...
متن کاملBacterial ferrous iron transport: the Feo system.
To maintain iron homeostasis within the cell, bacteria have evolved various types of iron acquisition systems. Ferric iron (Fe(3+)) is the dominant species in an oxygenated environment, while ferrous iron (Fe(2+)) is more abundant under anaerobic conditions or at low pH. For organisms that must combat oxygen limitation for their everyday survival, pathways for the uptake of ferrous iron are ess...
متن کاملStructure Evaluation of IroN for Designing a Vaccine against Escherichia Coli, an In Silico Approach
Introduction: Some strains of Escherichia Coli, including intestinal pathogenic strains, commensal strains, and extra intestinal pathogenic E. coli (ExPEC) have a significant impact on human health status. A standard vaccine designed based on conserved epitopes can stimulate a protective immune response against these pathogens. Additionally, enhanced expression at the infection site as a pathog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 195 1 شماره
صفحات -
تاریخ انتشار 2013